
q-Gram Tetrahedral Ratio (qTR) for Approximate Pattern Matching

Dr. Greg Holland, Dr. John R. Talburt - University of Arkansas at Little Rock

greg@gregholland.com jrtalburt@ualr.edu

Abstract
 Text-based data values often exhibit variations

due to differences in valid spellings, misspellings,

abbreviations, transpositions, deletions, aliases, etc.

Traditionally, exact matching is used to facilitate

record linkage or other combinations of data values.

Exact matching does not allow for the variations

which are common to data values, leaving many gaps

in record linkage efforts. Approximate pattern

matching techniques such as edit distance and

Soundex are common approaches, however, both

methods can fail to differentiate the variety of results.

This research provides a simple yet systematic

approach to approximate pattern matching and text

comparison utilizing tetrahedral numbers and a

comprehensive q-gram algorithm.

Keywords: Pattern Matching, Approximate String

Matching, q-Gram, n-Gram, Tetrahedral Number,

Triangular Pyramidal Number

1. Introduction
String matching is based upon exact matching

techniques, most often associated with database

statements written in SQL, either in the form of the

GROUP BY clause or the WHERE String1=String2

expression. This type of matching is valid but

incomplete.

 The text string “NICK” cannot be matched to

“NICHOLAS”, though the two names are often

interchangeable for the same person. A table of

known aliases or nicknames may be available which

could allow for NICK-to-NICHOLAS matching,

however, these tables are always incomplete and do

not normally include transpositions, such as “JOHN”

to “JONH”. Infrequently used names are not likely

to be present in a standard nickname table, though

there may be multiple variations of the name for the

same individual..

 Furthermore, nickname or alias tables are domain-

specific and often field-specific, which is an

undesirable requirement if attempting any general-

purpose text comparisons. When the strings being

compared are alphanumeric, the concept of

“nicknames” may have no meaning. For example,

consider “T8R9X” compared to “TBR9X”. It may be

possible to create a table of aliases for domain-

specific alphanumeric values, however, it is unlikely

that all possible errors could be anticipated in

advance.

2. Background

2.1 Standard approaches
 Standard approaches to approximate string

matching include both Edit distance and Soundex.

Soundex immediately fails when two strings do not

begin with the same character.[1] Additionally,

Soundex was designed for words that “sound alike”,

and not words which may be typed incorrectly. The

transposition of two consonants in a string are likely

to result in two different Soundex values, which

makes approximate matching very difficult.

 Edit distance, in its most basic form, returns an

integer value representing the minimal number

character insertions, deletions, or substitution

necessary to transform one string into the other. By

its definition, edit distance is not sensitive to the

position of where string differences occur. For

example, all pairs of strings differing in only one

character all return an edit distance of 1. Weightings

may be incorporated into the edit distance formula to

differentiate results by position, but this process

increases complexity even further. [3]

2.2 q-Grams
The term ‘q-gram’ (also called ‘n-gram’) refers

to a subsequence of q items from a given sequence.

[4] With respect to data values such as the earlier

examples of the text value “CHRIS”, all possible q-

grams where q = 3 would be the subsequences

“CHR”, “HRI”, and “RIS”. The value of q can be

any number between 1 and the length of the

sequence. A variety of existing methods for pattern

matching utilize q-grams in their approach. [5]

2.3 Tetrahedral Numbers
A tetrahedral number, also called a triangular

pyramidal number, is a figurate number

corresponding to the number of discrete points

arranged into a tetrahedron (triangular base pyramid).

Calculation of a tetrahedral number follows the

formula: [6]

For example, the tetrahedral number calculated

for n = 4 is Tn = 20, illustrated as 20 discrete points in

Figure 1.

Figure 1: A tetrahedral arrangement for Tn with side

length n = 4, represented by 20 discrete points.

3. q-Gram Tetrahedral Ratio (qTR)

3.1 Triangular Arrangement

Consider the text string “JOHN”. Possible q-

grams for “JOHN” are “J”, “O”, “H”, and “N”, when

q = 1; “JO”, “OH”, and “HN”, when q = 2; “JOH”

and “OHN”, when q = 3; and “JOHN” when q = 4.

These 10 subsequences constitute all possible q-

grams for “JOHN”. If each letter in these ten

subsequences is considered a discrete point, there are

20 discrete points for the text string of length 4,

identical to the calculation of Tn for n = 4.

A triangular arrangement can be used to illustrate

all possible subsequences for a pattern (string of

characters) of any length. In each case, the length n

of the pattern will represent the number of

subsequences on each side of the triangle, the number

of subsequences in total will be Σn, and the total

number of characters will be Tn.

Figure 2 has a triangular shape with each side

consisting of 4 subsequences, there are 10 total

subsequences, and the number of discrete points

(individual characters) is 20. Though the display is

two-dimensional, the 20 discrete points could

theoretically be positioned to match Figure 1.

Figure 2: Triangular arrangement of subsequences for

“JOHN”.

3.2 String Pattern Comparisons

Combining the q-gram subsequences for

character strings with the mathematical aspects of

tetrahedral numbers allows for a comparison of any

two string patterns. Rather than selecting a particular

value for q, this more comprehensive approach would

include all possible values for q.

To compare any two strings, S1 and S2, the

comprehensive q-gram subsequences for S1 are

located within S2, if possible. Suppose that S1 =

“JOHN” and S2 = “JONH”. Each of the ten possible

q-gram subsequences in Figure 2 for “JOHN” are

indicative of pattern similarity if those subsequences

can also be located as a subsequence of “JONH”.

Figure 3 highlights the subsequences from Figure 2

in common with subsequences of string “JONH”.

Figure 3: Highlighted subsequences of “JOHN”

which are shared with subsequences of “JONH”.

{“J”,”O”,”H”,”N”,“JO”}.

3.3 Calculation of Tetrahedral Similarity

In order to determine the similarity of two strings

(S1 and S2) utilizing the tetrahedral aspects of q-

gram subsequences, Tn is calculated where n is the

length of S1, and Q is the count of discrete points

(characters) shared by the q-gram subsequences in

common to both S1 and S2.

 The simple ratio qTR can be calculated as:

Given that 0 ≤ Q ≤ Tn, it is true that 0 ≤ qTR ≤ 1.

For the example where S1=”JOHN” and

S2=”JONH”, qTR = 0.3. This qTR value is obtained

because:

• Q = 6, as illustrated by the 6 discrete points

(individual characters) in the 5 subsequences

shared by S1 and S2, highlighted in Figure 3

• n = 4, the length of S1= “JOHN”

• Tn = 20, the tetrahedral number when n = 4,

and the total number of discrete points

(individual characters) in Figures 2 and 3

• qTR = Q / Tn = 6 / 20 = 0.3

Another example mentioned in the introduction

of this research was that of “T8R9X” and “TBR9X”.

In this example, qTR = 11 / 35 = 0.314. There are 11

characters in the 7 subsequences highlighted in

Figure 4 reflecting the same process used for Figure

3, allowing S1=”T8R9X” and S2=”TBR9X”.

Figure 4: Highlighted subsequences of “T8R9X”

which are shared with subsequences of “TBR8X”.

{“T”,”R”,”9”,”X”,”R9”,”R9X”}.

3.4 Software Implementation of qTR
Despite the comprehensive q-gram aspects of the

qTR approach, the coded implementation of qTR is

surprisingly simple. Utilizing Visual Basic for

Applications (VBA), the implementation of the

proposed qTR function would consist of only a dozen

lines of code as a simple nested loop.

Figure 5: VBA implementation of qTR

 The qTR implementation would also include the

function declaration including the input variables S1

(String 1) and S2 (String 2) as well as the declaration

of integer variables i, j, Q, and Tn with initial values

of zero. Though other modifications or error

checking may be optionally included, no other code

would be necessary to implement qTR.

4. Experimental Results

4.1 Limited Commutability
It is possible to obtain a qTR result which is

applicable even if the order of S1 and S2 values are

reversed. “JOHN” and “JONH” can be interchanged

with no effect on the qTR result of 0.3. Likewise,

“T8R9X” and “TBR9X” can be interchanged with no

effect on the qTR result of 0.314. This string

commutability is only a special case of the qTR

algorithm, limited to cases where the lengths of S1

and S2 are identical.

In the event that S1 and S2 have differing string

lengths n, the respective values of Tn also differ. As a

consequence, the qTR result are expected to depend

upon the ordering of the two comparison strings.

Observe the difference in qTR results when

evaluating S1=“NICK” and S2=“NICHOLAS”:

• Q = 10 due to the shared subsequences of

“N”, “I”, “C”, “NI”, “IC”, and “NIC”.

• n = 4, corresponding to the length of S1.

• Tn = 20 when n = 4.

• qTR = Q / Tn = 10 / 20 = 0.5.

Compare to S1=”NICHOLAS” and S2=”NICK”:

• Q = 10 due to the shared subsequences of

“N”, “I”, “C”, “NI”, “IC”, and “NIC”.

• n = 8, corresponding to the length of S1.

• Tn = 120 when n = 4.

• qTR = Q / Tn = 10 / 120 = 0.083.

Because the interchange of the two strings can

cause the value for qTR to differ, it may be desirable

to devise a method to ensure consistent results for

calculating qTR regardless of string ordering.

4.2 Adjusted qTR Methodology
The qTR calculation is determined by the values

of Q and Tn. The value of Q for any two strings is a

constant, determined by the particular subsequences

shared regardless of string order. Consequently, the

differing values in qTR occur when the length values

differ. A simple adjustment for qTR would

incorporate both possible values of n in order to

eliminate the impact of string order. Utilizing a

length-weighted average for the two qTR results

effectively produces the desired order-independent

effect. If n1 represents the length of S1 and n2

represents the length of S2, an n-weighted average

for qTR would be calculated as:

Although the formula appears significantly more

complicated than the earlier version, the change to

the code is minor, requiring only the introductions

and assignments of a few new variables.

Figure 6: VBA implementation of adjusted qTR.

Revisiting earlier examples, the adjusted qTR values

would be:

• qTR = 0.3 for (“JOHN”,”JONH”)

• qTR = 0.314 for (“T8R9X”,”TBR9X”)

• qTR = 0.222 for (“NICK”,”NICHOLAS”)

The standard approaches to approximate string

matching do not demonstrate this precision in result

differentiation. For the three examples above,

Soundex results in a “match” for (“JOHN”,”JONH”)

and a “no match” for the other two cases. Edit

distances for the three examples are 1, 1, and 5,

respectively.

5. Conclusion and Future Work

5.1 Executive Summary

 Summarizing the findings of this research, the

proposed qTR methodology:

• utilizes all possible q-gram subsequences for

two strings

• incorporates the mathematical concept of

tetrahedral numbers

• determines a similarity ratio for any two

strings

• is not dependent upon the order of the two

strings

• requires minimal code to implement

Additionally, the qTR methodology as described

appears to:

• have no limitations to any particular set of

characters

• be applicable for both left-to-right (LTR)

and right-to-left (RTL) directional text

situations, provided both strings are written

in the same manner

5.2 Recommendations
A minimum qTR value should be determined

through subject matter expertise for the intended

implementation. The purpose of approximate pattern

matching is to increase automated record linkage.

Valid linkages will be determined by the user and

should represent those “near matches” that the user

would approve if doing the comparison work

manually. It may be necessary to determine multiple

qTR value ranges corresponding to those string

comparisons which are deemed highest-confidence,

acceptable, unacceptable, or worthy of visual

inspection.

Implementation of the qTR for non-Western

alphabet/keyboard data would be beneficial to further

research the “universal” aspects of the methodology.

Subject matter expertise in those languages or data

sets would enhance the research immensely.

Though the qTR as described is neither domain-

specific nor field-specific, it is understood that the

implementation of the qTR to specific applications

may be enhanced by domain-specific or field-specific

coding adjustments, such as an “extra credit” factor

for strings which begin with the same letter. The

further enhancements to the qTR may improve the

performance of the approximate string matching by

incorporating elements from alternate methods, such

as the phonetic aspects of Soundex.

 Comparison and modification related to additional

techniques, such as the Jaro-Winkler String

Comparison[7] may enhance the utility of qTR.

The qTR may be utilized to create nickname or

alias tables for a particular implementation if

frequently-occurring string combinations are

determined to be acceptable as matches.

 It is recommended that the qTR approach be

introduced to both computer science and information

science students, potentially during database

application instruction, or whenever string matching

is discussed. The relative simplicity of the qTR

implementation should allow for in-depth discussion

of the intent, statements, and execution of the qTR

function. Additionally, students of number theory in

mathematics may appreciate the practical application

utilizing tetrahedral numbers as a key factor of the

methodology.

References
[1] National Archives and Records Administration,

“The Soundex Indexing System”, May 30, 2007,

http://www.archives.gov/genealogy/census/soundex.h

tml, retrieved January 10, 2010.

[2] Gilleland, M., “Levenshtein Distance, in Three

Flavors”, 2009, http://www.merriampark.com/ld.htm,

retrieved October 10, 2009.

[3] Damerau, Fred J., “A Technique for Computer

Detection and Correction of Spelling Errors,”

Communications of the ACM, 7 (3), 171-6, 1964.

[5] Christen, Peter, A Comparison of Personal Name

Matching: Techniques and Practical Issues,

Australian National University, TR-CS-06-02, 2006.

[5] Gravano, Luis, et al., “Using q-grams in a DBMS

for Approximate String Processing,” Bulletin of the

IEEE Computer Society Technical Committee on

Data Engineering, 24 (4), 28-34, 2001.

[6] Weisstein, Eric W. "Tetrahedral Number."

http://mathworld.wolfram.com/TetrahedralNumber.ht

ml, Wolfram - Mathworld, retrieved February 10,

2010.

[7] LingPipe, “Code Spelunking: Jaro-Winkler String

Comparison,” LingPipe Blog, December 13, 2006,

http://lingpipe-blog.com/2006/12/13/code-

spelunking-jaro-winkler-string-comparison, retrieved

November 22, 2009.

